1990

it is not the commonest conformation in either
(Sundaralingam, 1971). The torsion angle about the
C1'—C1P bond defined by the end atoms O4' and C6P
is 126-2 (5)°.

One of us (KGF) is grateful to the SERC and
Celltech Limited for the award of a CASE Research
Studentship.
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Abstract. C,H,,0,S, M, =324.4, monoclinic, P2,/c,
a=9-375 (1), b 21- 334(4) ¢=9-733 (4) A, /i—
113-38 (2)°, =1786-8(9)A°>, Z=4, D =
1.21 Mg m—3, A(Mo Ka) =0-71073 A, U=

0-155 mm~!, F(000) = 696, T=296 K, R = 0-054 for
1964 reflections. The cyclohexane ring is in an almost
ideal chair conformation and the relationship between
the C(3)—O(Ts) and C(4)—C(5)(CH,), bonds is anti-
periplanar, as required stereoelectronically for a suc-
cessful occurrence of a fragmentation reaction. There
are no unusual bond distances or angles.

Introduction. Commercially available dimedone (5,5-
dimethyl-1,3-cyclohexanedione) (I) can be readily
transformed into 2,2,5,5-tetramethyl-3-oxocyclohexyl
p-toluenesulfonate (II) by standard methodology
(Gaoni & Wenkert, 1966). The title compound (II) is
the key intermediate in a synthetic sequence leading to
Artemisia’s ketone (IIT) (Simonsen & Owen, 1953) by
fragmentation of the derived enolate (IV), as depicted in

0108-2701/87/101990-03%01.50

the scheme below. The success of such a fragmentation
reaction (Brocksom, LaScala Teixeira, Kanawaga &
Brocksom, 1987) is highly dependent upon the angular
relationship that exists between the bonding electron
pairs, and ideally should be antiperiplanar for the bonds
C(3)—O(3) and C(4)—C(5) (II) (Marshall, 1969;
Cookson, Edwards, Hudec & Kingsland, 1965). There-
fore it became of interest to study the preferred
conformation of the title compound (II), which has led

to the present crystal structure determination.

;/o o\i °(s|75 o. ifo:,rs
(Im

av

Experimental. Prismatic colourless crystals 0-30 x
040 x 0-25 mm; Nonius CAD-4 diffractometer;
graphite-monochromated Mo Ka; cell parameters by

© 1987 International Union of Crystallography
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least squares on setting angles for 22 reflections;
12 <0< 20° w260 scans, scan width (0-80 +
0-35 tanf)°, scan speed 6-7° min~! max.; range of hkl:
0<h<11,0<k<?25 —11 <I<11;standard reflec-
tions 008, 700 varied +1:7% of mean intensities over
data collection; 3335 reflections measured, 3137
unique, R;,, =0-019, 1966 observed above 3o(I); Lp
and absorption corrections (max. and min. trans-
mission factors 0:962, 0-938). The structure was solved
by direct methods; in final cycles of full-matrix
least-squares refinement all non-H atoms anisotropic. H
atoms located on geometrical grounds, methyl groups
as rigid bodies, all with fixed U= 0-96 A2 Function
minimized 2 w(|F,| —IF,1)? with w=1/16*F,)) +
0-002 | F,121; 200 parameters refined; unobserved
reflections and reflections 110 and 130 excluded;
R =0-054; wR = 0-060; inspection of F, and F, values
indicated secondary-extinction correction required:
Fore = F (1 — 107* x F*/sinf), where x refined to 0-13
in the final run; (4/0),,,, = 0-002; dp excursions within
0-2 and —0-3 e A-3. Scattering factors for non-H atoms
from Cromer & Mann (1968) with corrections for
anomalous dispersion from Cromer & Liberman (1970)
and for H from Stewart, Davidson & Simpson (1965);
programs used: SHELX76 (Sheldrick, 1976), ORTEP
(Johnson, 1965). Most of the calculations were per-
formed on a VAX 11/780 computer from the Instituto
de Fisica e Quimica de Sao Carlos.

Discussion. The molecule is shown in Fig. 1, together
with atom labelling. Positional atomic parameters and
equivalent isotropic temperature factors are given in
Table 1.* Bond lengths and angles are given in Table 2;
all values are within the expected range.

* Lists of H-atom positions, anisotropic thermal parameters and
structure factors have been deposited with the British Library
Document Supply Centre as Supplementary Publication No. SUP
44088 (13 pp.). Copies may be obtained through The Executive
Secretary, International Union of Crystallography, 5 Abbey
Square, Chester CHI 2HU, England.

Fig. 1. A perspective view of the molecule.
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Table 1. Fractional atomic coordinates and equivalent

isotropic thermal parameters with e.s.d.s in
parentheses

x y z Beq*(Az)
s 0-3804 (1)  0-1319(0)  0-1290(1)  4.35(3)
o(1) 0-4264 (3)  0.0983 (1)  0-2653(3)  6-2(1)
0(2) 0-4830(3)  0-1766(1)  0-1078(3)  5.70(9)
0(3) 0-3422(3)  0.0793(1)  0-0063(2)  3-82(7)
0(4) 0-1094 (3)  0-0785(2) —0-5193(3)  6-18(9)
c(n 0-2197(4) 00636 (2) —0-4087(4)  4.0(1)
cQ 02052 (3)  0-0568 (2) —0-2577(4)  3.62(9)
c@3) 03379 (3)  0-0954 (2) —0-1432(3)  3.32(9)
C(@) 0-4970 (3)  0-0825(2) —0-1432(3)  3.40(9)
C(3) 0-5014 (4)  0-0924 (2) —02974(3)  3-9(1)
C(6) 0-3762(4)  0-0515(2) —0.4106(4)  4-3(1)
c( 04710 (5)  0-1614(2) —0-3456 (5)  5-5(1)
C(8) 0-6613(5)  0-0733(2) —0-2897(5)  5-6(1)
c© 0-2208 (4) —0-0140(2) —0-2179(4)  4-6(1)
C(10)  0.0484 (4)  0.0810(2) —0-2677(5)  5-8(1)
C(1)  0.2013(4)  0-1681(2)  0-0928(4)  4-1(1)
C(12) 00994 (5)  0-1427(2)  0-1484(5)  S-1(1)
C(13)  ~0-0400(5)  0-1719(2)  0-1214(5)  5-7(1)
C(14) —0-0797(5)  0-2270(2)  0-0430(5)  5-5(1)
C(15)  0-0238(5)  0-2519(2) —0-0136(5)  5-6(1)
C(16)  0-1633(5)  0.2231(2)  0.0100(4)  4-9(1)
C(17) —0-2268(6)  0-2610(2)  0-0224(6)  7-6(2)

* B, =4Y,3,B,,(a,a) (Hamilton, 1959).

Table 2. Bond lengths (A) and angles (°) with e.s.d.’s in

parentheses
S—0(1) 1-416 (3) C4)—C(5) 1.532(5)
$-0(2) 1-426 (3) C(5)-C(6) 1:525 (5)
S-0(3) 1573 2) C(5)—C(7 1.537 (5)
s—c(11) 1-752 (4) C(5)-C(8) 1-526 (6)
C()—C(2) 1.536 (5) C(11)—C(12) 1-382 (6)
C(1)-C(6) 1.497 (6) C(11)—C(16) 1.388 (5)
C(1)-0(4) 1-202 (4) C(12)—C(13) 1-376 (7
C(-CR) 1.539 (5) C(13)-C(14) 1.370 (6)
C(2-C(9) 1.552 (5) C(14)-C(15) 1-397 (7)
C(2—C(10) 1.524 (5) C14)-C(17) 1-500 (7)
C(3)-C(4) 1.517 (5) C(15)~C(16) 1-379(7)
C(3-003) 1.480 (4)
$-0(3)-C(3) 119:3 (2) C(3)-C@4)-C(5) 112:6 (3)
S—C(11)-C(12) 1203 (3) C(4)—C(3)-0(3) 108-3 (2)
S—C(11)—C(16) 119-6 (3) C(4)-C(5)-C(7) 1109 (3)
O(1)-S—0(2) 120-1 (2) C4)—C(5)-C(8) 108-8 (3)
O(1)-5-0(3) 104.1 (2) C(6)}-C(1)-0(4) 122:2(3)
o(1)-s—C(11) 108-8 (2) C(6)—C(5)-C(4) 108-5 (3)
0(2)-S-0(3) 109-3 (2) C(6)-C(5)-C(7) 109-3 (3)
0(2-s—C(11) 1089 (2) C(6)—C(5)-C(8) 1100 (3)
0(3)-S—C(11) 1045 (2) C(71)-C(5)-C(8) 109-3 (3)
C()-C(2)—C(9) 107-2 (3) C(9-C(2)-C(10)  109-8 (3)
C(1)-C()—C(10)  110:9 (3) C(11)-C(12)~C(13) 1200 (4)
C(1)-C(6)—-C(5) 111-7(3) C(11)—C(16)—C(15) 118-8 (4)
C(2)—C(1)-C(6) 117-1 (3) C(12-C(11)~C(16) 120-1 (4)
C(2)—C(1)-0(4) 120-7 (3) C(12-C(13)—C(14) 1215 (4)
C(2)-C(3)—C(4) 114.5 (3) C(13)-C(14)—-C(15) 117-9 (4)
C(Q2)-C(3-0(3) 106-7 (2) C(13)-C(14)—C(17) 121-4 (4)
C(3)-C()—C(1) 106-8 (3) C(14)-C(15)-C(16) 121.7 (4)
C(3}~C(2—C(9) 111-8 (3) C(15)—-C(14)—C(17) 120-6 (4)
C(3)-C(-C0) 1103 (3)

The cyclohexane ring is in an almost ideal chair
conformation as indicated by the Cremer & Pople
(1975) parameters: g, = 0-042 (4), g, = —0-543 (4) A,
0, =44 (5)°, Q. =0-544 (4) A, 6=175-6 (4)°. Fig. 2
is a Newman projection down C(5)—C(6) showing the
cyclohexane ring conformation and also that the
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Fig. 2. A Newmann projection of the molecule, down C(5)—C(6).

relationship between C(3)—0O(3) and C(4)—C(5) bonds
is antiperiplanar. Therefore, the stereoelectronic
requirements are met and the fragmentation reaction
should occur with a relatively low activation energy.
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Nucleic Acid Binding Drugs. XVII. Structures of 4-Substituted Analogues of the
Antitumour Drug Amsacrine
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Abstract.  4’-(9-Oxo-4-acridinyl)methanesulfonanilide
monohydrate (I), C,,H,,N,0,S.H,0, M, = 382, mono-
clinic, P2,/c, a=7-373(1), b=11.266(4), c=
20-925 (3) A, f=94-59 (2)°, V=1732.5A3, Z=4,
D, ,=1.466gcm™3, A(CuKa)=1.54178A, u=
18-76 cm~!, F(000) = 800, T=293 K, R =0-078 for
1238 observed reflections. 4'-(9-Amino-4-acridinyl)-
methanesulfonanilide hydrochloride (II), C,,H,sN;0,-
S+.Cl-, M, = 399-4, monoclinic, P2,/c, a = 10-437 (2),
b=16-092 (3), c=10-866 (1) A, f=91-28 (2)°, V
=1824.5A3%, Z=4, D,=1.456 gcm=3, 1(CuKa)=
1-54178 A, p=30-99 cm™', F(000) = 832, T =293 K,

* Address correspondence to this author.
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R =0-047 for 1501 observed reflections. The acridone
and acridine rings in (I) and (II) are highly planar. The
methanesulfonanilide substituent groups are oriented in
a similar manner in both structures, although- the
methanesulfonanide groups adopt different orientations
with respect to the phenyl ring.

Introduction. A large number of acridines substituted at
the 9 position have been synthesized and evaluated for
antitumour activity (Baguley, Denny, Atwell & Cain,
1981; Denny, Cain, Atwell, Hansch, Panthananickal &
Leo, 1982). The compound 4’-(9-acridinylamino)-3’-
methoxymethanesulfonanilide (ansacrine) has outstand-
ing experimental in vivo activity in the series, and is
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